Publications
2024
- J. S. R. Park, S. W. Cheung, Y. Choi, and Y. Shin, tLaSDI: Thermodynamics-informed latent space dynamics identification, Computer Methods in Applied Mechanics and Engineering 429, p117144 2024
- J.T. Lauzon, S.W. Cheung, Y. Shin, Y. Choi, D. M. Copeland, K. Huynh, S-OPT: a points selection algorithm for hyper-reduction in reduced order models, SIAM Journal on Scientific Computing, 46, 4, 2024
- S.W. Cheung, Y. Choi, H.K. Springer, T. Kadeethum, Data-scarce surrogate modeling of shock-induced pore collapse process, Shock Waves, 34, p237--256, 2024
- T. Kadeethum, D. O'Malley, Y. Choi, H.S. Viswanathan, H. Yoon Progressive transfer learning for advancing machine learning-based reduced-order modeling, Scientific Reports, 14, 15731 2024
- S. Chung, Y. Choi, P. Roy, T. Moore, T. Roy, T. Y. Lin, D. T. Nguyen, C. Hahn, E. B. Duoss, S. E. Baker Train small, model big: Scalable physics simulators via reduced order modeling and domain decomposition, Computer Methods in Applied Mechanics and Engineering, 427, 117041, 2024
- A. Tran, X. He, D. A. Messenger, Y. Choi, D. M. Bortz, Weak-form latent space dynamics identification, Computer Methods in Applied Mechanics and Engineering, 427, 116998, 2024
- X. He, A. Tran, D. M. Bortz, Y. Choi, Physics-informed active learning with simultaneous weak-form latent space dynamics identification, arXiv preprint, arXiv:2407.00337, 2024
- Y. Kim, Y. Choi, B. Yoo, Gappy AE: A nonlinear approach for Gappy data reconstruction using auto-encoder, Computer Methods in Applied Mechanics and Engineering, 426, 116978, 2024
- A. N. Diaz, Y. Choi, M. Heinkenschloss A fast and accurate domain decomposition nonlinear manifold reduced order model, Computer Methods in Applied Mechanics and Engineering, 425, 116943, 2024
- C. Bonneville, X. He, A. Tran, J. S. Park, W. Fries, D. A. Messenger, S. W. Cheung, D. M. Bortz, D. Ghosh, J. S. Chen, A Comprehensive Review of Latent Space Dynamics Identification Algorithms for Intrusive and Non-Intrusive Reduced-Order-Modeling, arXiv preprint arXiv:2403.10748 2024
- C. Bonneville, Y. Choi, D. Ghosh, J.L. Belof, GPLaSDI: Gaussian Process-based Interpretable Latent Space Dynamics Identification through Deep Autoencoder, Computer Methods in Applied Mechanics and Engineering, 418, 116535, 2024
2023
- Y. Kim, Y. Choi, B. Yoo, Gappy data reconstruction using unsupervised learning for digital twin, arXiv preprint, arXiv:2312.07902 2023
- S.W. Chung, Y. Choi, P. Roy, T. Moore, T. Roy, T.Y. Lin, D.T. Nguyen, C. Hahn, E.B. Duoss, S.E., Baker, Train small, model big: Scalable physics simulations via reduced order modeling and domain decomposition, arXiv preprint, arXiv:2401.10245 2023
- C. Bonneville, Y. Choi, D. Ghosh, J.L. Belof Data-driven autoencoder numerical solver with uncertainty quantification for fast physical simulations, Machine Learning and the Physical Sciences Workshop, NeurIPS, 2023
- A.N. Diaz, Y. Choi, M. Heinkenschloss Nonlinear-manifold reduced order models with domain decomposition, Machine Learning and the Physical Sciences Workshop, NeurIPS, 2023
- S.W. Suh, S.W. Chung, P.T. Bremer, Y. Choi Accelerating flow simulations using online dynamic mode decomposition, Machine Learning and the Physical Sciences Workshop, NeurIPS, 2023
- A.L. Brown, E.B. Chin, Y. Choi, S.A. Khairallah, J.T. McKeown A data-driven, non-linear, parameterized reduced order model of metal 3D printing, Machine Learning and the Physical Sciences Workshop, NeurIPS, 2023
- T. Wen, K. Lee, Y. Choi Reduced-order modeling for parameterized PDEs via implicit neural representations, Machine Learning and the Physical Sciences Workshop, NeurIPS, 2023
- A. Tran, X. He, D.A. Messenger, Y. Choi, D.M. Bortz Weak-form latent space dynamics identification, arXiv preprint, arXiv:2311.12880 2023
- P.H. Tsai, S.W. Chung, D. Ghosh, J. Loffeld, Y. Choi, J.L. Belof Accelerating kinetic simulations of electrostatic plasmas with reduced-order modeling, Machine Learning and the Physical Sciences Workshop, NeurIPS, 2023
- T. Kadeethum, D. O'Malley, Y. Choi, H.S. Viswanathan, H. Yoon Progressive reduced order modeling: empowering data-driven modeling with selective knowledge transfer, arXiv preprint, arXiv:2310.03770 2023
- C. Vales, Y. Choi, D.M. Copeland, S.W. Cheung Energy conserving quadrature based dimensionality reduction for nonlinear hydrodynamics problems, Technical Report, LLNL-TR-853055 2023
- T. Kadeethum, J.D. Jakeman, Y. Choi, N. Bouklas, H. Yoon, Epistemic uncertainty-aware Barlow twins reduced order modeling for nonlinear contact problems, IEEE Access, 2023
- X. He, Y. Choi, W. Fries, J. Belof, J.S. Chen, gLaSDI: Parametric physics-informed greedy latent space dynamics identification, Journal of Computational Physics, 489, 112267, 2023
- A.N. Diaz, Y. Choi, M. Heinkenschloss, A fast and accurate domain-decomposition nonlinear manifold reduced order model, arXiv preprint, arXiv:2305.15163, 2023
- Q.A. Huhn, M.E. Tano, J.C. Ragusa, Y. Choi, Parametric dynamic mode decomposition for reduced order modeling, Journal of Computational Physics, 475, 111852, 2023
- C. G. Petra, M. Salazar De Troya, N. Petra, Y. Choi, G. M. Oxberry, D. Tortorelli, On the implementation of a quasi-Newton interior-point method for PDE-constrained optimization using finite element discretizations, Optimization Methods and Software, 1-32, 2023
- S.W Cheung, Y. Choi, D. Copeland, K. Huynh, Local Lagrangian reduced-order modeling for Rayleigh-Taylor instability by solution manifold decomposition, Journal of Computational Physics, 472, 111655, 2023
2022
- T. Kadeethum, F. Ballarin, D. O'Malley, Y. Choi, N. Bouklas, H. Yoon, Reduced order modeling for flow and transport problems with Barlow Twins self-supervised learning, Scientific Reports, 12(1), 2022
- X. He, Y. Choi, W. Fries, J. Belof, J.S. Chen, Certified data-driven physics-informed greedy auto-encoder simulator, arXiv preprint, arXiv:2211.13698, 2022
- S. McBane, Y. Choi, K. Willcox, Stress-constrained topology optimization of lattice-like structures using component-wise reduced order models, Computer Methods in Applied Mechanics and Engineering, 400, 115525, 2022
- T. Kadeethum, D. O'Malley, Y. Choi, H.S. Viswanathan, N. Bouklas, and H. Yoon, Continuous conditional generative adversarial networks for data-driven solutions of poroelasticity with heterogeneous material properties, Computers & Geosciences, Volume 167, 105212, 2022
- W. Fries, X. He, Y. Choi, LaSDI: Parametric latent space dynamics identification, Computer Methods in Applied Mechanics and Engineering, volume 399, 115436, 2022, Also available as arXiv:2203.02076.
- C.F. Jekel, D.M. Sterbentz, S. Aubry, Y. Choi, D.A. White, J.L. Belof, Using Conservation Laws to Infer Deep Learning Model Accuracy of Richtmyer-Meshkov Instabilities arXiv preprint, arXiv:2208.11477, 2022
- Y. Kim, Y. Choi, D. Widemann, T. Zohdi, A fast and accurate physics-informed neural network reduced order model with shallow masked autoencoder, Journal of Computational Physics, 451, 110841, 2022. Also available as arXiv:2009.11990.
- T. Kadeethum, F. Ballarin, D. O'Malley, Y. Choi, N. Bouklas, H. Yoon, Reduced order modeling with Barlow Twins self-supervised learning: Navigating the space between linear and nonlinear solution manifolds, arXiv preprint, arXiv:2202.05460, 2022
- D. Copeland, S.W. Cheung, K. Huynh, Y. Choi, Reduced order models for Lagrangian hydrodynamics, Computer Methods in Applied Mechanics and Engineering, Volume 388, 114259, 2022. Also available as arXiv:2104.11404.
- T. Kadeethum, F. Ballarin, Y. Choi, D. O'Malley, H. Yoon, N. Bouklas, Non-intrusive reduced order modeling of natural convection in porous media using convolutional autoencoders: Comparison with linear subspace techniques, Advances in Water Resources, Volume 160, 104098, 2022
2021
- T. Kadeethum, D. O'Malley, J.N. Fuhg, Y. Choi, J. Lee, H.S. Viswanathan, N. Bouklas, A framework for data-driven solution and parameter estimation of PDEs using conditional generative adversarial networks, Nature Computational Science, 1, 819-829, 2021
- C. Hoang, Y. Choi, K. Carlberg, Domain-decomposition least-squares Petrov-Galerkin (DD-LSPG) nonlinear model reduction, Computer Methods in Applied Mechanics and Engineering, Volume 384, 113997, 2021
- S. McBane, Y. Choi, Component-wise reduced order model lattice-type structure design, Computer Methods in Applied Mechanics and Engineering, 381, 113813, 2021
- Y. Kim, K.M. Wang, Y. Choi, Efficient space-time reduced order model for linear dynamical systems in Python using less than 120 lines of code, Mathematics, 9(14), 1690, 2021
- Y. Choi, P. Brown, W. Arrighi, R. Anderson, K. Huynh, Space-time reduced order model for large-scale linear dynamical systems with application to Boltzmann transport problems, Journal of Computational Physics, 424, 109845, 2021. Also available as arXiv:1910.01260.
2020
- Y. Choi, D. Coombs, R. Anderson, SNS: A Solution-based nonlinear subspace method for time-dependent model order reduction, SIAM Journal on Scientific Computing, 42(2), A1116-A1147, 2020
- Y. Choi, G. Boncoraglio, S. Anderson, D. Amsallem, C. Farhat Gradient-based constrained optimization using a database of linear reduced order models, Journal of Computational Physics, 423, 109787, 2020. Also available as arXiv:1506.07849.
- Y. Kim, Y. Choi, D. Widemann, T. Zohdi, Efficient nonlinear manifold reduced order model Workshop on machine learning for engineering modeling, simulation and design @ NeurIPS 2020, 2020. Also available as arXiv:2011.07727
2019 and earlier
- Y. Choi, K. Carlberg, Space-time least-squares Petrov-Galerkin projection for nonlinear model reduction, SIAM Journal on Scientific Computing, 41(1), A26-A58, 2019
- Y. Choi, G. Oxberry, D. Whit, T. Kirchdoerfer, Accelerating design optimization using reduced order models, arXiv preprint, arXiv:1909.11320, 2019
- K. Carlberg, Y. Choi, S. Sargsyan, Conservative model reduction for finite-volume models, Journal of Computational Physics, 371, p280-314, 2018
- G. Oxberry, T. Kostova-Vassilevska, W. Arrighi, K. Chand, Limited-memory adaptive snapshot selection for proper orthogonal decomposition, International Journal of Numerical Methods in Engineering, 109(2), p198-217, 2016
- D. Amsallem, M. Zahr, Y. Choi, C. Farhat, Design optimization using hyper-reduced-order models, Structural and Multidisciplinary Optimization, 51, p919-940, 2015